

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Endocrine Stress Reactivity Associated with Extreme Sports

Anthony C. Hackney, PhD, DSc, FACSM, FNAK

Director – Exercise Endocrine Research Laboratory Department of Exercise & Sport Science Department of Nutrition School of Medicine - Gilling's School of Global Public Health University of North Carolina at Chapel Hill

Physiologist

1st International Extreme Sports Medicine Congress

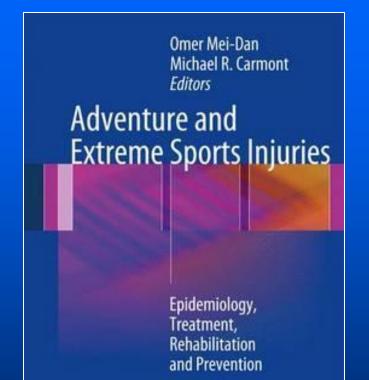
Eustress ← → Distress

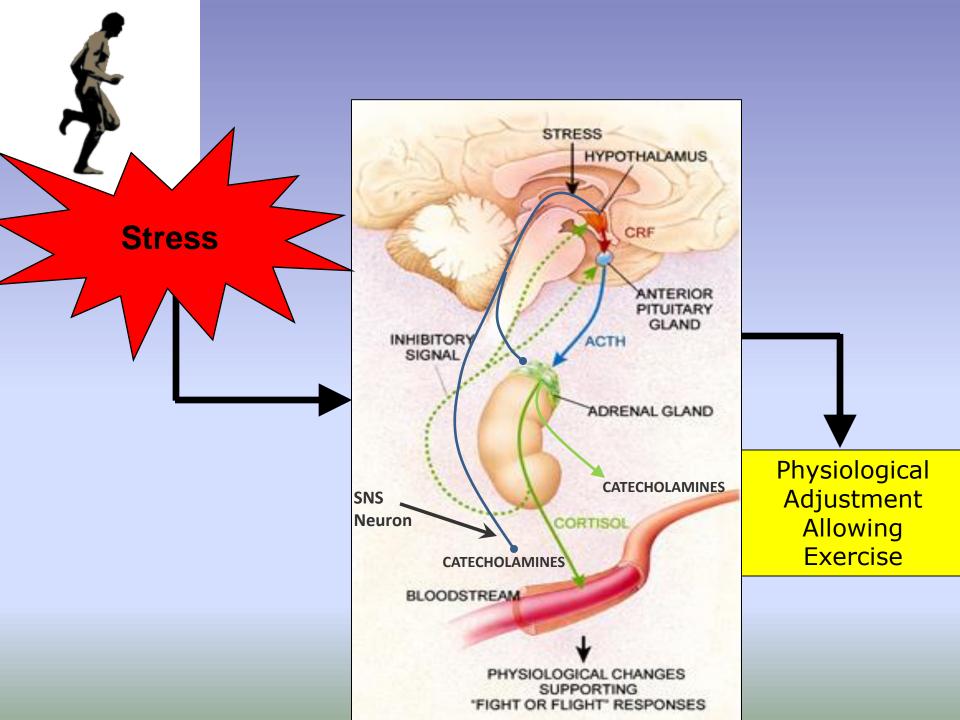
Stress

"Positive"

"Negative"

Stress Hormone Reactivity


Focus on athletes in "traditional Olympic sports and military personnel


Research group focus

Focus on athletes in "traditional Olympic sports and military personnel

D Springer

Physical activity stressEnvironmental stress

Endocrine disruption – dysfunction associated with excess stress

Overtraining Syndrome Underperformance Syndrome "Burnout" Hypogonadism PTSD

Health issue risks

To provide an overview of the hormonal stress responses to a variety of extreme sports, and examine whether there are implications for health relates issues due to these responses.

Systematic and controlled research studies
Avoided case studies, anecdotal reports, "junk science"

- Ultra-endurance events
- Extreme mental stress events

Limited research – number an scope

Ultra-Endurance Events

Two Oceans Ultra-marathon

Hew-Butler et al. 2008

 -↑↑ cortisol
 -↑↑ aldosterone
 -↑↑ BNP
 -↑↑ IL-6
 -↓↓ AVP

OLD MUTUAL TWO OCEANS MARATHON

R

OLD MUTUAL

Before and after completing race (56 km) and in comparison to 60 min laboratory run

Hawaiian Ironman

Ginsburg et al. 2001

- Men
- $-\uparrow$ cortisol
- ↑ estradiol
- $-\downarrow$ testosterone
- $-\downarrow$ lipid peroxidation (free radical formation)
- Females no Δ hormones, peroxidation (*n*)

Before vs. after completing race

160 km Ultra-marathon

Kraemer et al. 2008 Hackney et al. 2009 $-\uparrow$ IL-6 $-\uparrow$ TNF- α – ↑ growth hormone _↑ cortisol $-\downarrow$ testosterone

- \downarrow innate immune function (days in recovery)

Before vs. after completing race

UMSTEAD 100 MILLE Trail Run

Greenland Artic Trek

Bishop et al. 2001

 ↓↓ testosterone:cortisol ratio
 ∞ length of trek
 ↑ psychological stress
 ∞ length of trek
 ∞ length of trek
 » e.g., anxiety, fatigue, depression
 » ↑ cortisol (∞ association)

Measured immediately before and throughout trek

Military War Games

Aakvaag & Opstad 1978, 81
Hackney et al. 1994, 95, 96 - ↓ testosterone - ↑ cortisol $- ↓ T_3$ - ↑ prolactin

Measured before and throughout maneuvers (4-6 day, continuous, minimal sleep)

Mountaineering

Benso et al. 2007 ■ Hackney et al. 1993, 95 $-\uparrow$ growth hormone $-\uparrow$ IGF $-\uparrow$ catecholamines $-\uparrow rT_3 \downarrow T_3$ » "Low T3 Syndrome" (Euthyroid sick syndrome)

Measured before and throughout ascent-descent (3 weeks to 2 months)

Extreme Mental Stress Events

Bungee Jumping

Measured day before, at time of jump and \downarrow rapidly after jump

Stenner et al. 2007

 - ↑cortisol

 - ↑growth hormone

 - ↑free T₄

Measured day before and as preparing to descent, upon ascent back to normal

Rock Climbing

Hodgson et al. 2009
Sherk et al. 2011

-↑, no ∆ cortisol
-↑ growth hormone
-↑ testosterone
-↑ anxiety ∞ difficulty climb

Measured before and after climb

Skydiving - Paragliding

Chatterton et al. 1997 ■ Thatcher et al. 2003 $-\downarrow$ testosterone $-\uparrow$ cortisol $-\uparrow$ catecholamines $-\uparrow$ prolactin – ↑ growth hormone $-\uparrow$ anxiety (peaked immediately before jump)

Measured day before vs. immediately before jump, returned to normal rapidly after jump

What about these sports? We do not know, due to a lack of research. Needs to be studied.

Summary

- Ultra-endurance events
 - Hormonal response ∞ metabolic load
 - ↑ heat, cold, hypoxia, hypocaloric
 - Anxiety, fear, apprehension (smaller degree)
 - Changes persist into recovery hours, days
- Extreme mental stress events
 - Anxiety, fear, apprehension (greater degree)
 - Changes transient, abate early in recovery
 - Hormonal response ∞ metabolic load (smaller degree)

Conclusions

Limited research on this topic – need more Extreme sports provoke - Stress hormone reactivity » 1 cortisol, GH, PRL, catecholamines metabolic demands (select sports) $\square \propto$ anxiety encountered (select sports) Medical implications » Stress hormone reactivity could exacerbate select medical conditions (e.g., hypertension) » Caution may be advised for some sports

activities and a good level of physical fitness is recommended prior to participation for all

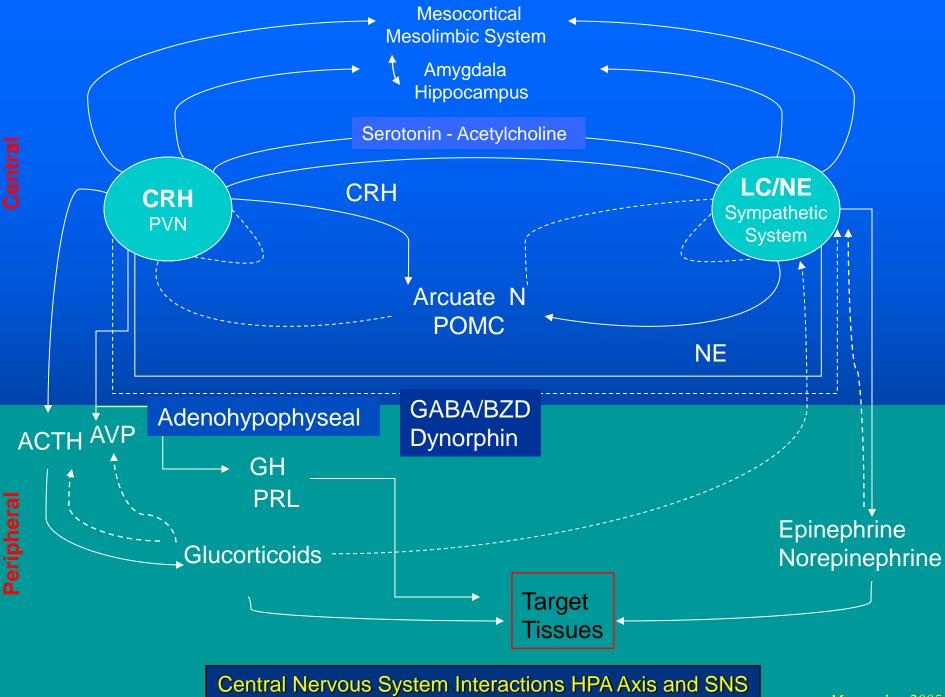
Future Directions

"Adrenaline Junkie"

"Fear is an incredibly strong emotion. If something scares us, the body immediately releases endorphins, dopamine and norepinephrine. Endorphins mitigate pain, dopamine and norepinephrine are performance enhancers. There haven't been direct studies on so-called action sports, but the general scientific thinking is that the more fearful a certain sport makes you, the greater the release of these chemicals. The greater the release of these chemicals, the greater the addiction-like symptoms."

> Michael Davis, Ph.D. Neuropharmacology Emory University Psychology Today

Acknowledgements



Exercise Endocrine Research Group

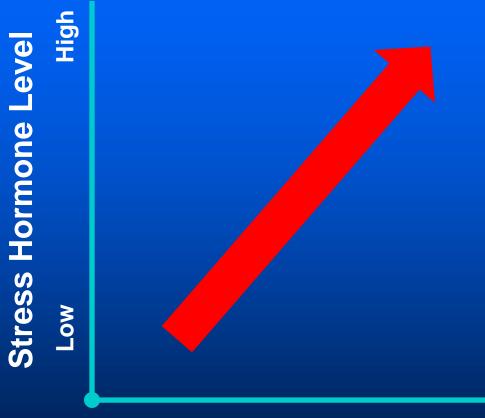
Collaborator Amy R. Lane

Mastorakos 2005

Stress Hormones – Exercise Response

Increase from basal levels

Norepinephrine (NE) >1000%
Epinephrine (E) >2000%
Adrenocorticotrophic Hormone (ACTH) > 500%
Cortisol > 400%
Prolactin >1000%
Growth Hormone >1000%


Stress Hormones – Exercise Response

Norepinephrine (NE)
Epinephrine (E)
Adrenocorticotrophic Hormone (ACTH)
Cortisol
Prolactin
Growth Hormone

Hormone focus

Exercise Effects

Exercise Work

Stress Response Model

Tsigos, Kyrou & Chrousos, 2002

A paratelic state ("thrill - excitment seeking")